jueves, 24 de enero de 2013

Soluciones al problema de Flavio Josefo



La formulación del problema da lugar a muchas ramificaciones en función del número de personas implicadas y de si este es o no una potencia de 2. A sí mismo es fundamental decidir si solo se debe calcular la posición de FJ o si también debemos conocer la del otro superviviente; es decir, si consideramos que Josefo, realmente, convenció a un zelote al azar o de si este era su cómplice desde el principio. 

Pero nosotros vamos a atenernos a los hechos históricos que conocemos: Flavio Josefo estaba acorralado junto a 40 de sus hombres; 41 en total, impar. 

Supongamos que cada hombre apuñala a su vecino. Los textos no dicen nada, pero es de suponer que si se hubiera recurrido a fórmulas más complicadas –y difíciles de explicar a un grupo tan numeroso y estresado- lo recogerían. 

El 1 mata al 2, el 3 al 4… y así hasta el 41, que por no tener un 42 al que matar, mata al 1. 

El 3 es ahora el primero, mata al 5, el 7 al 9, el 11 al 13,… el 31 al 33, el 35 al 37, el 39 al 41. 

El 3 mata al 7, el 11 al 15, el 19 al 23, el 27 al 31, el 35 al 39. 

Ahora caen el 11 a manos del 3, al 27 lo liquida el 19, y al 3 el 35. 

Los números de la suerte son el 19 y el 35. 

¿Cómo se calcula esto matemáticamente? Os proponemos una forma sencilla.

Esta tabla muestra cuales son los supervivientes según cuantos suicidas "juegan", y, como veréis, hay un patrón.



N es el número de participantes en el proceso, y P1 y P2 los “números de la suerte”. 
Lo primero que queda claro es que nunca, en ningún caso, debes ocupar un lugar par –salvo que aspires a la eternidad de forma inmediata-. 

Las dos posiciones afortunadas también se pueden determinar sin necesidad de completar la tabla, de hecho, con llegar al 16 o 17, un punto en el que aún es posible calcular de cabeza el proceso de eliminación, todo debe quedar claro. 

Un puesto, el más sencillo de obtener, corresponde a los números marcados en amarillo. Si os fijáis, a partir de cada cifra potencia de 2 - divisible por 2 hasta la unidad- marcada en azul, la serie se reinicia en el 1 y continúa con la sucesión de impares. ¿Cuál es el último número potencia de 2 de 41? El 32. 

41 – 32 = 9 

1 (el que se salva en todos los ^2) + [9x2] (al ser impares contamos de dos en dos)= 19 

Ya sabes dónde colocarte si quieres vivir, pero… ¿y tú colega? 

Contando a partir del 2, primera cifra que admite más de un superviviente, también comienza una sucesión de números impares, que se reinicia cada vez que alcanza la cantidad total de participantes, momento en que, como es lógico, vuelve al principio. 

Dado que todos los que se salvan son impares, la posición del segundo superviviente avanza dos veces más rápido que la de la rueda. Esto implica que, cada vez que se reinicia lo hace el doble de lejos que antes: 3,4,5=3 – 6,7,8,9,10,11=6… el siguiente punto de coincidencia se alcanzará 12 lugares más adelante, 11+12 = 23, y el siguiente 24 veces después, 23+24= 47, pero ya superamos el número de participantes, por lo tanto partimos de 23. 

23=23, 24=1, 25=3…. 

¿Cuántos números hay entre el 23 y el 41? 18. Como solo contamos impares, por cada nuevo participante la posición del segundo superviviente salta 2 filas, 18x2=36; esto sería correcto si la serie arrancase en el número coincidente, pero no es así, claro, sino en el inmediatamente posterior. Por tanto P=(18x2)-1, o P=1(numero inicial) +[17 (18 menos el número inicial)x2], P=35 

Y si esta solución os parece demasiado sencilla, y lo que os gusta son las formulas, os adjuntamos este enlace http://matgazine.tk/wp-content/uploads/2011/07/art%C3%ADculo0.Josefo.pdf que os proporcionará todas las ecuaciones y variables que deseéis. 

Pero, la verdad, cuesta imaginarse a Flavio Josefo, o a cualquiera, sacando un ábaco y poniéndose a hacer cálculos en un momento así. 

Existen soluciones más sencillas para una situación como esta, basadas en dos principios fundamentales en toda época y lugar: -hecha la ley, hecha la trampa (el que reparte se lleva la mejor parte) – y los amigos están para las ocasiones. 

Flavio decide el orden de la matanza; empieza él y tiene a su colega a su lado. Matemáticamente puede que esta distribución sea desaconsejable, pero, a nivel práctico y dado que cada uno debe matar a quien se encuentra a su lado, resulta una gran ventaja.



Han muerto todos los números pares y se han quedado vivos sus verdugos, marcados en amarillo, los impares. Aquí se produce la primera variación, el 41, tu amigo, no mata a nadie porque el general, tú, debe supervisar el proceso hasta el final. 

Si la cadena de muertes no es continua, si no que va por rondas, es decir, al terminar cada matanza los supervivientes vuelven a situarse –algo bastante probable, dado que deben pasar sobre los cadáveres de sus compañeros- e inician una nueva serie de degollinas, que el que se quede sin “pareja” no participe es algo muy lógico.

                                        
Nueva escabechina y todo sigue igual. Es el momento más peligroso, quedan 9 soldados frente a tu colega y tú. Es la segunda vez que os libráis los dos. 

Aunque, en medio de unas circunstancias tan poco aptas para la reflexión serena, algún zelote llegara a plantearse que aquí hay truco, seguro que podéis acusarle a él de “rajarse” a última hora y mandarlo a que exponga sus quejas en el juicio final. 




Ya queda poco, solo permanecen en pie 4 zelotes decididos a suicidarse, tu colega y tú. 

Aquí surge un problema, el 33 debería enviar al paraíso al 41, tu compadre, y ya sabemos que ni tú ni él tenéis ganas de emprender, en este momento, un viaje tan largo. 

Caben dos soluciones: o bien el general decide cambiar el orden a última hora -¡aquí mando yo!-, o, más sencillo, cuando el 33 acuda confiado a terminar con las penas del 41, este se le adelanta y termina con las suyas. 

¿Qué se va a notar la trampa? Desde luego, pero ya solo quedáis un soldado preguntándose qué pasa, tú y tu colega. Y, bueno, ya se sabe que dos son compañía pero tres son multitud… ¿O no es verdad, número 17?



En resumen, la posición óptima, desde siempre, es la de jefe y amiguete del jefe. 

Si es que lo mejor es no romperse mucho la cabeza… 

Bueno, la gracia divina ha caído sobre ti y os habéis salvado. Ahora solo te queda plantarte ante el general romano y profetizarle que será emperador -¿no es eso lo que desea secretamente todo general romano?- Y, ya de paso, si su hijo cachas está presente, ver en su inmediato futuro a una guapa princesa morenaza loquita por sus huesos. 

No te quepa duda de que te creerán. Eres el elegido por los cielos, al que el propio Jehová acaba de salvar de las garras de la muerte.

1 comentario: